
1

An Execution Service for Grid Computing
NAS Technical Report NAS-04-004

April 2004

Warren Smith
Computer Sciences Corporation

NASA Advanced Supercomputing Division
NASA Ames Research Center

wwsmith@nas.nasa.gov

Chaumin Hu
Advanced Management Technology Inc.

NASA Advanced Supercomputing Division
NASA Ames Research Center

chaumin@nas.nasa.gov

Abstract
This paper describes the design and implementation of

the IPG Execution Service that reliably executes complex
jobs on a computational grid. Our Execution Service is
part of the IPG service architecture whose goal is to
support location-independent computing. In such an
environment, once a user ports an application to one or
more hardware/software platforms, the user can describe
this environment to the grid, the grid can locate instances
of this platform, configure the platform as required for the
application, and then execute the application. Our
Execution Service runs jobs that set up such environments
for applications and executes them. These jobs consist of
a set of tasks for executing applications and managing
data. The tasks have user-defined starting conditions that
allow users to specify complex dependencies including
tasks to execute when tasks fail, a frequent occurrence in
a large distributed system, or are cancelled. The
execution task provided by our service also configures the
application environment exactly as specified by the user
and captures the exit code of the application, features that
many grid execution services do not support due to
difficulties interfacing to local scheduling systems.

1. Introduction

The NASA Information Power Grid (IPG) project [2,
13] is one of the original grid computing projects and our
goal has been to integrate, develop, and deploy a set of
grid services to enable scientific discovery. The scientists
we support perform tasks such as designing and analyzing
aerospace vehicles, investigating the Earth’s climate, and
archiving and analyzing astronomical data. We have
based our grid on the Globus toolkit [11] and we are
currently in the process of migrating from version 2 of
Globus (GT2) to version 3 of Globus (GT3). We have
also deployed services such as the Storage Resource
Broker [4] and Condor [5].

While we have found existing grid services to be

usable, they do not always satisfy all of our needs. In
particular, we have found that the collection of available
grid services and software do not add up to a usable grid.
There are many reasons for this, but a few examples are
that users still need to know details about the resources
they want to use so that they can configure their
applications to use the resources and users must handle
even simple failures rather than the grid handling them.

For the past two years, the NASA Information Power
Grid (IPG) project has been developing higher-level grid
services that attempt to create a grid to address these
problems. The services we are developing include
resource brokering, automatic software dependency
analysis and installation, configuring execution
environments, and policy-based access control. In
addition, we have developed the service we describe in
this paper: An Execution Service to reliably execute
complex jobs in a grid environment.

The jobs sent to our Execution Service consist of a set
of tasks for executing applications and managing data. A
job can consist of only a few, or a large number of tasks.
Our service executes the tasks in a job based on user-
defined starting conditions for each task where the
starting conditions are based on the states of other tasks.
This formulation allows users to describe jobs that have
tasks that execute in parallel and also tasks to execute
when other tasks fail, a frequent occurrence in a large
distributed system like a computational grid, or when the
user cancels tasks. Another important feature of our
Execution Service is that when it executes an application,
the application is executed in the environment exactly as
specified by the user and the exit code of the application
is captured. This does not occur with many grid execution
services because of difficulties interfacing to local
scheduling systems.

This paper begins in the next section with a brief
overview of the IPG service architecture and a description
of how our Execution Service fits within this architecture.
Section 3 provides an overview of the functionality of our

This work was supported by the NASA Computing, Information, and Communications Technology (CICT) program and
performed under Task Order A61812D (ITOP Contract DTTS59-99-D-00437/TO #A61812D) awarded to Advanced
Management Technology Incorporated.

2

Execution Service. Section 4 provides more information
on the task-based job model our service supports. Section
5 describes how we are implementing our service as an
OGSI service using the Globus toolkit. Section 6 presents
related work and we provide our conclusions and future
work in Section 7.

2. IPG Service Architecture

Our experience with Grid Computing has been that
while there is a large amount of software available from
various sources, this software does not add up to a very
usable system once it is deployed. Functionality is
missing from the software, the software is not as reliable
as we would like, and resource differences are not hidden
from our users so they end up needing to know a large
amount of information about resources and their
peculiarities. Our goal in the IPG is to provide a grid
environment that addresses these problems and provides
value to our users. To accomplish this, we are focusing on
making Grid computing location-independent. What we
mean by this is that once a user has an application that can
execute on a certain hardware/software platform or
platforms, the user can describe this environment to the
grid, the grid can locate instances of this platform that can
be used for the application, the grid can configure the
platform as required for the application, and the grid can
then execute the application.

Our approach to providing this location-independent
environment is to build our own set of services and to use
grid services implemented elsewhere. We more exactly
describe our problem as providing support for location-
independent execution of workflows. Figure 1 shows our
architecture and provides an overview of the current
status of our services. A workflow consists of set of tasks

and the dependencies between these tasks where the
dependencies consist of both control and data
dependencies. Tasks consist of simple tasks such as those
for application execution and file management and
composite tasks that contain other tasks. A workflow is
sent to a Workflow Manager to execute. The Workflow

Manager decides which portion of the workflow to
execute and asks the Resource Broker for resource
suggestions for each task.

The Resource Broker makes suggestions using user-
specified requirements such as resource type and user-
specified preferences such as quick completion. The
requirements sent to the broker describe the
hardware/software platforms that are suitable for
executing a task. To make selections, the Broker consults
many other services. The Distributed Directory Service is
used to search for resources with specific characteristics.
The Resource Pricing Service is contacted to determine
the cost of using these resources. The Allocat ion
Management Service is used to determine if the user has
an allocation that can be charged to when executing on
specific resources. The Access Control Service is
accessed to determine which resources the user can
access. The Metadata Management Service is used to find
virtual files that have the data the user requires. The
Replica Management service is accessed to determine the
physical locations of the user’s data. The Software
Dependency Analysis Service is consulted to determine
what software needs to be present on a system for an
application to execute. The Software Catalog is used to
locate where needed software is already installed or can
be obtained. The Prediction Service provides predictions
of application completion times and file transfer times.

Once resources have been selected, the Naturalization
Service is used to make each task in a workflow

Distributed
Directory

Event
Management

Information

Allocation
Management

Dynamic
Access

Resource
Pricing

Accounting

Resource
Brokering

Prediction
Remote

Execution

Workflow Management

Execution

Application Execution

Software
Dependency

Analysis

Monitoring Management

Management

Metadata
Management

Data
Movement

Replica
Management

Data Management

Software
Repository

Naturalization

Available

In development

Planned

Implemented elsewhere
Access
Control

Figure 1. Architecture of the services we are creating and some of the services they interact with. Components higher in
the figure tend to use components lower in the figure.

3

compatible with the computer system(s) it will execute on
by configuring environment variables, directories, and
specifying any supporting software that needs to be
copied to the system. The purpose of the Execution
Service, described in this paper, is to reliably execute a
task graph. A task graph is the resulting set of tasks after a
workflow (or portion of a workflow) has had computer
systems selected for it and has been naturalized to those
systems. The Execution Service uses a Remote Execution
Service, such as the one provided by the Globus toolkit, to
execute applications on remote resources. During this
execution, the Dynamic Access Service is used to map
each grid user to a local account without the user having a
pre-existing account. Event Management services are
used by the Execution service to notify clients of the
status of the execution of a task graph and are used by the
Monitoring Service [17, 18] to notify clients of the status
of resources and services. Finally the Management
Service [17] is not visible to the general user but it
received information about a grid from Monitoring
services, notices when problems occur, and responds to
problems in an appropriate way.

3. Overview

After several years of experience using grids, we
decided that existing grid services to execute jobs did not
satisfy all of our requirements for job model, job tracking,
ease of maintenance, and other features. We therefore
began developing an Execution Service that would satisfy
our requirements and those of our users. The version
presented here is the second major version of our service
and it provides much of the functionality that our users
have requested after using the first version of the service
for almost a year.

Our Execution Service allows users to submit,
monitor, and cancel complex jobs. Each job consists of a
set of tasks that perform actions such as executing
applications and managing data. Each task is executed
based on a starting condition that is an expression on the
states of other tasks. This formulation allows tasks to be
executed in parallel and also allows a user to specify tasks
to execute when other tasks fail or are cancelled. Our
support for such complex jobs has evolved out of our
previous version of the Execution Service that supported a
job model of pre-stage files, execute a single application,
and post stage files. Our users asked for additional
functionality such as creating directories and deleting
files, executing multiple applications in one job, and
specifying what tasks to execute when tasks fail or are
cancelled. Further information about our job model is
presented in Section 4.

Our Execution Service attempts to execute tasks in a
reliable manner. In a grid, resources such as networks,
computer systems, and storage systems are constantly
unavailable for planned maintenance and unplanned
failures. Further, even when the resources are available,
the software and services located on those resources may
be unavailable or not operating correctly. There are ways

to mitigate this inherent unreliability by techniques such
as pre-planning outages and monitoring the status of a
grid [7, 16] so that failures can be quickly repaired, but
this will not eliminate the problem. To help our users deal
with failures, our Execution Service detects when tasks
fail and retries them when appropriate. To determine how
to handle a failure, information about the cause of the
failure is needed.

After a job has been submitted to our Execution
Service, users can monitor it in several ways. While the
job is executing, users can either be notified when the
state of the tasks in a job change or they can query to
obtain a history of state changes for each task in a job.
Further, many applications indicate whether they
executed successfully or not using the exit code of the
application. This is important information that our service
captures, provides to the user and uses to determine if the
execution of an application succeeded or failed.

The notification of task state changes is accomplished
by our Execution Service supporting the Event Producer
interface of our event management framework and the
client of our service supporting the Event Consumer
interface of our event management framework. This
allows the client to subscribe for events about task state
from the service and the service to notify the client when
the tasks change state. Another way that users can
monitor their jobs is that even after a job is finished, users
can query the Execution Service to obtain all of the
information relating to the job. This information is stored
for a user-specified amount of time with a default of
several days. The ability to obtain information about a job
that has already completed is very useful because it
allows users to easily determine if a job that ran while the
user was not watching it executed correctly. Without this
historical record, a user has to examine the output of their
application executions to determine if they executed
correctly. If a failure occurred, a user has to use their
application output to try to determine which application
executions or file management operations failed.

We have implemented our Execution Service as an
OGSI service [19] using version 3 of the Globus Toolkit
[1]. Our service operates in a client-server manner, with
the clients installed on our user-accessible systems and
our service installed on a computer system dedicated to
hosting grid services. We currently have version 2 of the
Globus toolkit deployed on the IPG so the Execution
Service executes tasks using the Globus Java CoG [14] to
access the Globus Resource Allocation Manager (GRAM)
and GridFTP services on our systems. Further information
about our implementation is presented in Section 5.

4. Job Model

The goals for our job model are to support complex
jobs consisting of many actions and support conditional
execution of actions depending on the states of other
actions. To satisfy these goals, we have defined a job
model where a job is a set of tasks. Each task has:

4

• An identifier that is user-defined and unique
among all of the identifiers of sibling tasks.

• A starting condition that describes when the task
can be started. This condition is specified as a
Boolean expression on the states of other tasks.
A starting condition can be empty which
indicates that the task can be started
immediately.

• A state that is:
o NOT_READY if the starting condition

of the task has not been met
o READY if the starting condition of the

task has been met, but the task has not
yet begun to execute

o RUNNING if the task is executing
o SUCCEEDED if the task executed

successfully
o FAILED if the task failed during

execution
o CANCELLED if the task was cancelled

by the user
o NOT_EXECUTED if the task will not

be executed because it’s starting
condition will not be met

• The state transition diagram for a task is shown
in Figure 2.

NOT_READY

READY

RUNNING

SUCCEEDEDCANCELLEDNOT_EXECUTED

starting condition met

task started

task succeeded

FAILED

task failed

user cancel

user cancel

user cancel or starting
condition never met

Figure 2. State diagram for a task.

We currently provide a variety of atomic tasks and a
composite task. An atomic task is a relatively simple task
that does not contain other tasks. We have defined atomic
tasks that contain general task information (identifier,
starting condition, and state) but also require additional
information. We have defined the following atomic tasks:

• An ExecuteTask that executes an application on
a remote computer system. A user specifies
parameters such as the host to execute the
application on, the application to execute, the

arguments to the application, the number of
CPUs, and so on. This task also has a user-
specified Boolean equation on the exit code of
the application so that the user can specify which
exit codes indicate success and which ones
indicate failure. By default, an exit code of 0
indicates success and any other exit code
indicates failure. The exit code used in this
equation is also provided to the user by the task.

• A MakeDirectoryTask that creates a directory on
a remote computer system. This task requires a
host and directory name.

• A CopyTask that copies files between remote
computer systems. The user specifies source and
destination hosts, directories, and file names
where the file names can include wildcards. A
user can also specify that a recursive copy should
be performed.

• A MoveTask that moves files between remote
computer systems. The user specifies source and
destination hosts, directories, and file names
where the file names can include wildcards. A
user can also specify that a recursive move
should be performed.

• A RemoveTask to remove one or more files or
directories. The user specifies a host, directory,
and file where the file name can include
wildcards. A user can also specify that a
recursive remove should be performed.

A composite task is used as a container for other tasks.
The use of composite tasks allows users to group tasks
that collaborate to perform a function into a single task
and then consider this functionality in an abstract manner.
In fact, a job submitted to the ExecutionService is simply
a composite task. While the same states are used for a task
whether it is atomic or composite, the current state of a
composite task is determined in a specialized way. The
state of a composite task is:

• NOT_READY until the starting condition of the
composite task is satisfied

• READY when the starting condition for the
composite task has been met but no subtasks of
the composite task have started to run.

• RUNNING while any subtask of the composite
task has had a state of RUNNING and any
subtasks are currently READY or RUNNING

5

• SUCCEEDED or FAILED based on a user-
defined Boolean expression when no more
subtasks of the composite task can run. The
Boolean expression contains variables that are
the states of the subtasks in the composite task.
This approach provides a user with very precise
control over the completion state of a task
without us defining a one-size-fits-all approach.

• CANCELLED if the user cancels the composite
task.

• NOT_EXECUTED if the starting condition for
the composite task will not be met.

5. Implementation

We have implemented our execution service as an
Open Grid Services Infrastructure (OGSI) [19] service
using version 3 of the Globus Toolkit as our hosting
environment. We plan to deploy only a few of these
services on computer systems dedicated to hosting
services and install clients on the user-accessible IPG
computer systems. The purpose of this approach is to
improve reliability and maintainability. Reliability is
hopefully improved by having only a few services
deployed on closely monitored systems. Maintainability is
improved by being able to easily upgrade services
deployed on a few systems rather than a service deployed
on every user-accessible system. This approach was very
helpful with the first version of our Execution Service
because we upgraded the deployed services many times
without upgrading the clients.

An overview of the implementation of our Execution
Service is shown in Figure 3. The core components of our
service consist of a Task Database and a Task Manager.
The Task Database is used to store tasks that have been
submitted for execution and is initially implemented atop
a Xindice database. Users can obtain information about
both active (not yet completed) and inactive (completed)
jobs. Information about inactive jobs is stored for several
days by default and a user can also specify the amount of
time to store job information.

The Task Manager is the core of the service and
handles the execution of tasks. The two main goals of the
Task Manager are to execute tasks in the proper order,
based on the user-specified starting conditions, and not
overload local and remote resources while executing
tasks. A more detailed view of the Task Manager is
shown on the right side of Figure 3.

Whenever tasks are added to the pool of Active Tasks
or whenever tasks finish executing, the Task Manager
examines the Active Tasks and determines if any are now
ready to run. These ready tasks are moved to Ready
Queues in the Thread Pools to execute. By following this
procedure, the Task Manager will execute tasks in the
correct order.

A Thread Pool contains a set of Task Threads to
execute tasks and a Ready Queue containing tasks that are
ready to execute. A Task Thread removes a task from the
head of the Ready Queue, executes that task, and then
tries to get another task to execute from the Ready Queue.

OGSI Hosting
Environment

Execution
 Service

Java CoG
GRAM Client

Java CoG
GridFTP Client

Execution Service
Client

OGSI Client Stubs

Globus 2
GRAM service

Globus 2
GRAM service

Globus 2
GridFTP Service

Globus 2
GridFTP Service

Task Manager

task state
changes

submit, cancel, and
query task graphs

Task Manager

Task
Database

submit and cancel
task graphs

tasks ready
to execute

task success
or failure

task state
changes

Thread Pool

Task ThreadTask ThreadTask Thread
Task

Task

Task

Ready Queue

Thread Pool

Task ThreadTask ThreadTask Thread
Task

Task

Task

Ready Queue

Active
Tasks

subscribe for
task state
changes

Figure 3. Overview of the implementation of our Execution Service.

6

The Task Manager moves a task to a Thread Pool
based on task type. A Thread Pool has either a fixed or an
unlimited number of threads available to execute tasks.
Thread Pools with fixed numbers of threads are used to
execute tasks that may overload a system such as
submitting applications and performing file management
operations. The limited number of threads bounds the
amount of concurrency and reduces the chance of
overwhelming the server running the Execution Service
or the resources being accessed by that service. Thread
Pools with unlimited numbers of threads are used to
execute tasks that will not overwhelm a resource, such as
waiting for an application execution to complete.

As described next, individual tasks also use supporting
software such as the Globus Java COG GRAM and
GridFTP clients to perform their functions.

5.1. Executing Applications Using Globus

We use the Globus Java CoG library to implement our
task that executes applications. We use the CoG GT2
clients rather than GT3 clients because we currently have
GT2 services installed on the IPG. We expect it to be a
simple matter to substitute calls to the Globus 3 client
library calls for version 2 calls when we upgrade to GT3
services.

We use the Java CoG GRAM client to execute
applications, but in a particular way. We do not use the
GRAM to directly execute the application specified by the
user in the ExecuteTask. Instead we execute a script that
we create. We have found that the combination of the
GRAM and different local schedulers results in several
problems. First, environment variables are not always

passed to the application as expected. If a user specifies
an environment variable in the Globus Resource
Specification Language (RSL), this environment variable
may not be set, may be set, or may be appended to the end
of the existing environment variable. In many cases, users
pass execution parameters to their applications using
environment variables so it is important that these
variables be set correctly. Second, exit codes from
applications are lost. The Globus GRAM does not attempt
to return exit codes, and even if it did, local scheduling
systems often do not provide exit codes that the GRAM
could return to the user. In many cases, applications
indicate if they have executed correctly using exit codes
so it is also important that these exit codes are available to
users.

Our approach to both of these problems is to create and
execute a script. This script sets the environment variables
exactly as specified by the user, executes the user-
specified application, captures the exit code of the
application, and sends this exit code to the Execution
Service using our Event Management Framework. Each
ExecuteTask is translated into a composite
GramExecuteTask, shown in Figure 4, to accomplish this.
The execution script is created by the
GramCreateScriptTask and is copied to the execution host
using a PutFileTask (not available to users) that uses a
GridFTP put. The GramSubmitTask then submits our
script using the GRAM. The GramWaitTask waits for a
GRAM job to finish and the GramCancelTask is called to
cancel the GRAM job if the user cancels the
ExecutionTask. We use these three GramTasks because
both the GramSubmitTask and GramCancelTask require
authentication, which is a CPU-intensive task that can

GramExecutionTask (et1_gram)
start: start_cond
success: (wait.state == SUCCEEDED)

ExecutionTask (et1)
start: start_cond

GramSubmitTask (submit)
start: (put.state == SUCCEEDED)

GramWaitTask (wait)
start: (submit.state == SUCCEEDED)

GramCancelTask (cancel)
start: (submit.state == CANCELLED) ||
(wait.state == CANCELLED)

transform ExecutionTask to
execute using GRAM

state of ExecutionTask is
state of GramExecutionTask

GRAM execution script

1. Set environment variables
2. Execute application
3. Capture exit code
4. Send exit code to ExecutionService

GramCreateScriptTask (script)
start:

PutTask (put)
start: (script.state == SUCCEEDED)

RemoveTask (remove)
start: (put.state == SUCCEEDED) &&
((wait.state == SUCCEEDED) || …)

LocalRemoveTask (remove)
start: (put.state == SUCCEEDED) &&
((wait.state == SUCCEEDED) || …)

Figure 4. Implementation of an ExecutionTask using the Globus GRAM.

7

overwhelm both the server running the ExecutionService
and the computer system running the GRAM server,
while waiting for a GRAM job to complete requires
virtually no resources. We therefore wanted to limit the
number of simultaneous GRAM submits and cancels but
did not want to limit the number of GRAM jobs that the
Execution Service is waiting to complete. Finally, a
RemoveTask and a LocalRemoveTask (not available to
users) are used to remove the execution script that we
created from the remote and service hosts.

5.2. File Management Using Globus
We also use the Globus Java CoG library to execute

our atomic tasks that manage files. Once again, we use the
GT2 Java CoG clients because we currently have GT2
services installed on the IPG. We use the GridFTP client
provided by the Java CoG to copy, move, and remove
files as well as to make directories. We copy files
between hosts using the 3rd party copy functionality of the
Java CoG. We enhance the functionality provided by the
Java CoG by maintaining the permissions of the
transferred files (such as the executable bit), by
supporting wildcards in file and directory names, and by
providing recursive copies. We enhance the ability of the
Java CoG to remove files on remote hosts by allowing
users to specify wildcards in file and directory names and
specifying that the remove should be performed
recursively. We provide moves of files by performing a
copy of the files and, if the copy succeeded, removing the
files from the source host. Finally, we directly use the
Java CoG to make directories on remote hosts.

6. Related Work

There are a fair number of services that support the
execution of jobs on grids. The basic grid service for
executing applications on remote computers is Globus
GRAM [8] in both it’s GT2 and GT3 incarnations. While
GRAM performs it’s basic function adequately, it does
have some deficiencies. It does not always set the
environment of the application as specified by the user,
due to difficulties interfacing to the many different types
of local scheduling systems. It also does not capture the
exit code of applications executed through it. Finally,
GRAM lacks the ability to execute complex jobs, such as
the ones we support.

The Condor-G system [12] uses the GRAM service,
but improves on it by enhancing it’s reliability.
Unfortunately, this improvement currently comes with an
administrative cost of maintaining a Condor-G daemon on
each host that wishes to submit Condor-G jobs. The
Condor group is beginning to address this problem by
providing a web service wrapper around Condor-G
daemons so that remote clients can access those daemons,
but a Condor-G version with this functionality has not yet
been released. Our service is already implemented in a
client-server manner and does not have daemons running
on client hosts. Condor-G has the same goal of reliable
execution as our service but it does not support jobs as

complex as ours. Also, unlike our service, Condor-G does
not maintain a database of jobs that have completed that
users can access.

DAGMan [6] is built atop Condor-G and supports the
execution of Directed Acyclic Graphs. A DAGMan job
consists of a set of Condor submit scripts to execute
where each script has execution order dependencies with
other scripts. A script is executed when all of the scripts it
depends on complete successfully. Each script may have
pre- and post-execution programs to execute before and
after a script is executed. If the pre-execution program
fails, its script will not be executed. All post-execution
programs in a DAGMan job can either be executed or not
when their associated scripts fail depending on a flag set
when submitting the DAGMan job. Our job model is
somewhat similar to the DAGMan job model. One of the
main differences is that we provide a more general
approach to specifying when to start tasks with our
starting condition expressions. This allows our service to
handle failures in a more general way by defining
complex sets of tasks to execute when tasks fail or are
cancelled. Our service is also different in that it does not
support the specification pre- and post-task programs to
execute because they are unnecessary in our job model,
we provide built-in tasks for file management, and we
provide composite tasks that contain sets of tasks.

Pegasus [9] is a workflow execute tool where the user
specifies the tasks to perform without specifying where to
perform them, Pegasus decides where to execute the tasks
and creates a DAGMan job to execute the tasks. Pegasus
workflows are not as fault tolerant as ours because they
do not include tasks to perform when tasks fail or our
cancelled and Pegasus workflows are not as complex as
ours because they do not support composite tasks that
contain sets of tasks. Pegasus selects resources for the
workflows submitted to it; functionality that we do not
support in our Execution Service.

UNICORE [10] provides it’s own services for
executing jobs. These jobs are similar to ours in that they
can consist of many tasks with execution order
dependencies between them and the tasks can be
composite tasks that contain other tasks. We provide more
flexible conditional task execution than UNICORE
abstract jobs, but UNICORE does allow a user to indicate
if tasks should execute whether or not the tasks it depends
on succeed or fail. Similar to our approach, UNICORE
also maintains job information after it has completed for
the convenience of users. UNICORE also provides
features such as executing each job in it’s own file space
which is a convenient abstraction. Unfortunately,
UNICORE is a vertical solution and requires adopting all
or none of it.

We use GridFTP [3] to manage remote files and we
add to the functionality provided by the Java CoG [14]
GridFTP client by supporting wildcards and recursive
operations. Our service also provides a superset of the
functionality available from reliable transfer services [15].

8

7. Conclusions and Future Work

This paper presents our IPG Execution Service that is
implemented as an OGSI service and reliably executes
complex jobs on a computational grid. This service is part
of our IPG service architecture whose purpose is to
provide a grid environment where users can execute
applications in a location-independent manner.

The jobs sent to our Execution Service consist of a set
of tasks for executing applications and managing data.
Our service executes each task in a job based on a user-
defined starting condition that is based on the states of
other tasks. An important feature of this formulation is
that it allows users to describe tasks to execute when tasks
fail, a common occurrence in a large distributed system
like a computational grid, or when the user cancels tasks.
Another important feature of our Execution Service is that
when it executes an application, the application is
executed in the environment exactly as specified by the
user and the exit code of the application is captured,
features not supported by many grid execution services.

There are several directions that we may take for
future work. First, as requested by our users, we will
provide C++ and Perl clients to our service. This will
force us to learn a different OGSI framework, the gSOAP
framework that is part of GT3, and wrap the C++ clients
we create with this framework to create Perl clients.
Second, we will need to support using GT3 mechanisms
for executing applications and managing files once we
upgrade our IPG infrastructure from GT2 to GT3. Third,
there are quite a few new tasks that we could support. We
could add tasks to manage files indexed by replica
catalogs, to select virtual files based on metadata, to
execute an application across multiple computer systems,
to indicate that tasks should execute simultaneously, or to
perform loops using special types of composite tasks.
Fourth, we could enable group-based access to execution
information. Our scientists typically work in groups so
such access could be useful. Fifth, the job database
contained in the Execution Service could be enhanced to
provide arbitrary searches and to allow users to annotate
jobs with information that they will find useful later.
Finally, we could allow our users to pause submitted jobs,
modify them, and then un-pause the jobs.

References

[1] "The Globus Project," http://www.globus.org
[2] "The NASA Information Power Grid,"

http://www.ipg.nasa.gov
[3] B. Allcock, J. Bester, J. Bresnahan, A. Chervenak, I.

Foster, C. Kesselman, S. Meder, V. Nefedova, D. Quesnel,
and S. Tuecke, "Data Management and Transfer in High
Performance Computational Grid Environments," Parallel
Computing Journal, vol. 28, pp. 749-771, 2002.

[4] C. Baru, R. Moore, A. Rajasekar, and M. Wan, "The
SDSC Storage Resource Broker," Proceedings of the
CASCON'98, Toronto, Canada, 1998.

[5] A. Bricker, M. Litzkow, and M. Livney, "Condor
Technical Summary," Computer Sciences Department,
University of Wisconsin - Madison 1991.

[6] Condor, "Condor Version 6.4.7 Manual," University of
Wisconsin-Madison 2003.

[7] K. Czajkowski, S. Fitzgerald, I. Foster, and C. Kesselman,
"Grid Information Services for Distributed Resource
Sharing," Proceedings of the The 10th IEEE International
Symposium on High Performance Distributed Computing,
2001.

[8] K. Czajkowski, I. Foster, N. Karonis, C. Kesselman, S.
Martin, W. Smith, and S. Tuecke, "A Resource
Management Architecture for Metasystems," Lecture
Notes on Computer Science, vol. 1459, 1998.

[9] E. Deelman, J. Blythe, Y. Gil, and C. Kesselman,
"Pegasus: Planning for Execution in Grids," University of
Southern California, Information Sciences Institute 2002-
20, November 15 2002.

[10] D. Erwin, "UNICORE Plus Final Report - Uniform
Interface to Computing Resources," UNICORE Forum
e.V. 2003.

[11] I. Foster and C. Kesselman, "Globus: A Metacomputing
Infrastructure Toolkit," International Journal of
Supercomputing Applications, vol. 11, pp. 115-128, 1997.

[12] J. Frey, T. Tannenbaum, I. Foster, M. Livny, and S.
Tuecke, "Condor-G: A Computation Management Agent
for Multi-Institutional Grids," Proceedings of the 10th
International IEEE Symposium on High Performance
Distributed Computing, San Francisco, CA, 2001.

[13] W. Johnston, D. Gannon, and B. Nitzberg, "Grids as
Production Computing Environments: The Engineering
Aspects of NASA's Information Power Grid," Proceedings
of the 8th IEEE International Symposium on High
Performance Distributed Computing, 1999.

[14] G. v. Laszewski, I. Foster, J. Gawor, W. Smith, and S.
Tuecke, "CoG Kits: A Bridge between Commodity
Distributed Computing and High-Performance Grids,"
Proceedings of the ACM Java Grande Conference, 2000.

[15] R. K. Madduri, C. S. Hood, and W. E. Allcock, "Reliable
File Transfer in Grid Environments," Proceedings of the
27th IEEE Conference on Local Computer Networks,
2002.

[16] W. Smith, "A Framework for Control and Observation in
Distributed Environments," NASA Advanced
Supercomputing Division, NASA Ames Research Center,
Moffett Field, CA NAS-01-006, June 2001.

[17] W. Smith, "A System for Monitoring and Management of
Computational Grids," Proceedings of the International
Conference on Parallel Processing, Vancouver, Canada,
2002.

[18] B. Tierney, R. Aydt, D. Gunter, W. Smith, V. Taylor, R.
Wolski, and M. Swany, "A Grid Monitoring Service
Architecture," Global Grid Forum Performance Working
Group 2001.

[19] S. Tuecke, K. Czajkowski, I. Foster, J. Frey, S. Graham,
C. Kesselman, T. Maquire, T. Sandholm, D. Snelling, and
P. Vanderbilt, "Open Grid Services Infrastructure Version
1.0," The Global Grid Forum June 27 2003.

